• Entropius@lemmy.world
      link
      fedilink
      English
      arrow-up
      22
      arrow-down
      2
      ·
      1 year ago

      Acceleration and Velocity are vectors. Changes in a velocity vector are an acceleration. Therefore when photons change direction technically it’s a form of acceleration.

      • metallic_z3r0@infosec.pub
        link
        fedilink
        English
        arrow-up
        9
        ·
        1 year ago

        I thought photons are always moving in straight lines from their perspective, and it’s space that’s bent. Unless it’s through a medium, then they just get absorbed and re-emitted, sort of.

        • Entropius@lemmy.world
          link
          fedilink
          English
          arrow-up
          13
          arrow-down
          1
          ·
          edit-2
          1 year ago

          Space bending is a general relativity thing, which isn’t really related much to how mirrors work.

          Regarding the medium bit, photons being absorbed and remitted can’t explain how light moves slower in glass. This is just an extremely popular myth. Photons are only absorbed by atoms at very specific frequencies. Also, the entire reason glass is transparent to begin with is that it’s not absorbing the photons (requires too much energy to bump the electron’s energy level so the photon isn’t absorbed and it keeps on trucking). Also photon absorption and remission is stochastic so there’s no way to control the direction it happens in or how quickly it happens. Random directions of remitted light would make glass translucent, not transparent. So for a few reasons, that’s not how it works.

      • Ook the Librarian@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 year ago

        Since photons are indistinguishable, it’s hard to say too much concretely, but it some sense a diffracted photon is different photon. In order for a photon to interact with say, a diffraction grating, the interaction is done with “virtual photons”.

        So for a photon to change course, aka accelerate, it does it by absorbing a virtual photon and emitting another. Whether that is the “same photon” after the interaction is kinda more philosophy than physics, at least to me.

        Feynman diagrams are surprisingly accessible for how much information they contain. It’s one way to think about photon (and other particle) reactions.